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Electronic transport through nanostructures can be suppressed by coherent population trapping, in which
quantum coherence leads to a dark state that decouples from the drain electrode. Finite transport, then, relies on
decoherence of the dark state. An alternative scenario for reduced transport is weak coupling of a state, referred
to as a blocking state, to the drain. This raises the question of whether and how these two scenarios can be
distinguished in the transport features. For the example of electron transport through a carbon nanotube, we
analyze the full counting statistics in terms of Lee-Yang zeros and factorial cumulants. This allows us to identify
regimes in which the distinction between dark and blocking state is possible and regimes in which this is not the
case.
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I. INTRODUCTION

The phenomenon of coherent population trapping occurs in
�-type atomic systems, when laser fields drive the atom into a
particular linear combination of eigenstates, a so-called dark
state, which becomes fully transparent to the light [1–4]. Ab-
sorption and subsequent fluorescent emission of light is, then,
only possible after decoherence of the dark state. All-electric
analogs of coherent population trapping have been proposed
in quantum-dot systems [5–9], and an experimental verifi-
cation of this effect in a carbon nanotube has been recently
reported in Ref. [10]. Electron transport in nanostructures
is, however, often subject to various competing microscopic
mechanisms that may complicate the identification of a partic-
ular effect. A suppressed current through a carbon nanotube or
a quantum dot may be due to coherent population trapping, but
it can also arise in the presence of a so-called blocking state,
i.e., a state that is just weakly coupled to the drain electrode
[11]. While for a dark state decoherence and/or virtual charge
fluctuations are required to sustain a finite remaining current,
electrons in a blocking state are directly coupled to the drain
electrode, even if only weakly.

This raises the question of how to distinguish a dark-state
from a blocking-state model based on transport measure-
ments. Since both scenarios imply a suppressed current,
the suppression alone is not sufficient to prove coherent
population trapping. More information about the underly-
ing dynamics and transport mechanisms is contained in the
current fluctuations. We, therefore, analyze the full count-
ing statistics of electron transfers. Such a strategy has been
successful for experimentally accessing spin relaxation in
singly charged quantum dots [12], the interaction between
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two spin-crossover molecules in nanojunction [13], a long-
lived coherence between spin excitations in antiferromagnetic
complexes attached to a carbon nanotube [14], and spin-flip
Raman and Auger processes in self-assembled quantum dots
[15].

For our study, we choose the same model system as in
Ref. [10] and use system parameters close to the experimental
values. The experimental setup is sketched in Fig. 1(a). A
quantum-dot device is realized by a carbon nanotube sus-
pended on top of two leads depicted in gold. The left lead
is slightly rotated along the tube axis with respect to the
right lead (not visible), resulting in different tunnel couplings
for the quantum-dot states to source and drain. This enables
an excitation of a special linear combination of eigenstates,
which completely decouples from the drain electrode, thus
forming a dark state. As a consequence, once this dark state is
occupied, the quantum dot is coherently trapped and electron
transport is suppressed. Only with a small probability, the dark
state can change, either by decoherence or by virtual charge
fluctuations with the source electrode, to another state that
is coupled to the drain electrode, and electron transport is
resumed.

We contrast this dark-state model with an alternative one,
the blocking-state model, in which transport is carried through
a state that is only weakly coupled to the drain electrode.
In this case, it is not the coherence but the weak coupling
that is responsible for the suppression of current. We aim at
distinguishing these two models by analyzing the full count-
ing statistics of electron transfer. As a theoretical indicator
of qualitatively different transport behavior, we employ the
Lee-Yang zeros of the moment generating function in the
complex plane. The position of the Lee-Yang zeros affects the
so-called factorial cumulants, that are experimentally accessi-
ble. In particular, the sign of the factorial cumulants will be
used as an indicator.
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FIG. 1. (a) A carbon-nanotube quantum dot coupled to source
and drain. Figure adapted from Ref. [10]. (b) Analog of an optical
� system, where the tunnel-coupled source (�L) and drain (�R)
enable transitions between the empty state |0〉 and particular linear
combinations of the valleys, eiφL/R | 〉 + e−iφL/R | 〉.

This paper is organized as follows. We introduce the dark-
state and the blocking-state model in Sec. II and discuss their
dynamics in terms of a kinetic equation in Sec. III. Then,
in Sec. IV, we analyze the full counting statistics in terms
of factorial cumulants. To get a deeper insight, we use the
Lee-Yang zeros in Sec. V to distinguish qualitatively different
topologies of their arrangement in the complex plane. As a
result, we find that for the system parameters of Ref. [10], the
dark and the blocking states cannot be distinguished by means
of full counting statistics. We identify, however, a regime with
different system parameters in which the two models can be
clearly discriminated from each other by the sign of the facto-
rial cumulants. Finally, we conclude our findings in Sec. VI.

II. SYSTEM

For the regime, we are interested in (shell 1 in Ref. [10]),
the quantum dot can be modeled by the Hamiltonian

HS =
∑

ν= ,

ε0d†
ν dν + Ud† d d† d , (1)

where d†
ν and dν are creation and annihilation operators.

The index ν ∈ { , } describes the valley degree of free-
dom, which for nanotubes with a zigzag edge corresponds
to eigenstates with a clockwise ( ) and counterclockwise
( ) electron motion around the nanotube [16]. The real
spin is not explicitly considered here and can be included
by a simple degeneracy factor. The single-particle energy
is denoted by ε0 and the strength of the Coulomb repul-
sion by U . The eigenstates and eigenenergies are given by
|χ〉 ∈ {|0〉, | 〉, | 〉, |d〉} and Eχ ∈ {0, ε0, ε0, 2ε0 + U }, re-
spectively, where double occupation |d〉 is assumed to be
irrelevant due to a strong Coulomb repulsion U . In Fig. 1(b),
the relevant states {|0〉, | 〉, | 〉} are illustrated as an effective
� system.

To describe the dynamics of the quantum dot, we employ
a master equation in Lindblad form for the reduced density

matrix ρ(t )

ρ̇ = Lρ = − i[HS + δH, ρ]

+
∑

j

� j

(
Lj ρL†

j − 1

2
{L†

j L j , ρ}
)

, (2)

where δH describes renormalization of the Hamiltonian, and j
labels all relevant Lindblad operators describing the coupling
to the environment. In addition, we set h̄ = 1 and make use of
the commutator [·, ·] and anticommutator {·, ·}.

We start by modeling the coupling that drives electron
transport and describes coherent population trapping. To this
end, we assume a tunnel-coupling Hamiltonian of the form

HC =
∑

k

(
tLd†

L,+cL,k + tRc†
R,kdR,+ + H.c.

)
, (3)

with tunneling amplitudes tL and tR to source and drain, re-
spectively. Here, cl,k and c†

l,k with l = L,R are the electron
annihilation and creation operators of the environment with
corresponding Hamiltonian HE = ∑

l=L,R

∑
k εkc†

l,kcl,k . The
excitations in the system are described by the operators

d†
L,± = 1√

2

(
eiφL d† ± e−iφL d† )

, (4a)

dR,± = 1√
2

(
e−iφR d ± eiφR d

)
. (4b)

Thus the two valleys | 〉 and | 〉 are coherently excited
with equal weights but relative phases described by φL and φR.
According to Eq. (3), only the excitations d†

L,+ and dR,+ play a

role. The orthogonal excitations d†
L,− and dR,− are assumed to

be dark, i.e., decoupled from source and drain, respectively.
In Ref. [10], these dark excitations described by φL and φR

are explained via the relative rotation of source and drain with
respect to the carbon nanotube.

Using the coherent Lindblad approximation [17–20], the
tunnel coupling in leading order is described by the following
Lindblad operators

LL,± =
∑
χ,χ ′

√
f (Eχ − Eχ ′ − μL)〈χ |d†

L,±|χ ′〉|χ〉〈χ ′|

≈
∑

ν= ,

〈ν|d†
L,±|0〉|ν〉〈0|, (5a)

LR,± =
∑
χ,χ ′

√
1 − f (Eχ ′ − Eχ − μR)〈χ |dR,±|χ ′〉|χ〉〈χ ′|

≈ dR,±, (5b)

where f (ω) = [eω/(kBT ) + 1]−1 is the Fermi-Dirac distri-
bution, T is the temperature, and μL and μR are the
electrochemical potentials of the leads. To ensure unidirec-
tional electron transport from left to right, we choose a small
temperature T and a large bias voltage eV = μL − μR >

0 such that f (ε0 − μL) ≈ 1 and f (ε0 − μR) ≈ f (ε0 + U −
μL/R) ≈ 0, see Fig. 2. Accordingly, the Lindblad operators
describing electron transport from right to left (originating
from the conjugated excitations dL,± and d†

R,±) are irrelevant.
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FIG. 2. Excitation energies for the quantum-dot system. The
state |B〉 can be excited by the left lead, but does not couple to the
right lead if x = 0. In this case, it becomes a dark state. Thus electron
transport is only possible through the coupled state |A〉, via a prior
transition from |B〉 to |A〉 with the decoherence rate �dec or via a
coherent evolution ωL induced by the left lead. For x > 0, the state
|B〉 becomes a blocking state, which is weakly coupled to the right
lead.

The respective tunneling rates are given by

�L,+ = 4�L, (6a)

�L,− = 0, (6b)

�R,+ = 2�R, (6c)

�R,− = 0, (6d)

where �l = π |tl |2Dl (εF) with l = L,R is given by the density
of states Dl (εF) of source and drain at the Fermi energy εF.
The relative factor of two between �L,+ and �R,+ is due to the
spin degree of freedom: while electrons can carry either spin
up or down when tunneling in, the spin of the electron that
tunnels out is given.

Due to the very nature of the coupling, there is a state
|A〉 that fully couples to the right lead, 〈0|LR,+|A〉 = 1, and a
state |B〉 that fully decouples from it in terms of the excitation
described by Eq. (5b), 〈0|LR,+|B〉 = 0. They are defined by

|A〉 = d†
R,+|0〉 = 1√

2

(
eiφR | 〉 + e−iφR | 〉), (7a)

|B〉 = d†
R,−|0〉 = 1√

2

(
eiφR | 〉 − e−iφR | 〉). (7b)

In contrast, the left lead excites (for φL �= φR) a linear
combination of |A〉 and |B〉. Thus, with time, the system can
evolve into state |B〉, which traps an electron and completely
blocks the transport. If |B〉 cannot be left directly, it is called
a dark state. This case is also known as coherent population
trapping.

To resume electron transport, the electron must somehow
escape the trap. In the following, we discuss three different
physical mechanisms for this.

A. Decoherence

One way to escape state |B〉 is via decoherence. Deco-
herence drives the state towards a total statistical mixture of
|B〉 and |A〉. Since electrons in state |A〉 can leave the dot,
electron transport is resumed. Phenomenologically, this can
be described by the Lindblad operators

Lk = Ik = 1

2

∑
νν ′

(τk )νν ′d†
ν dν ′ , (8)

with rates �dec. Here, we defined a valley spin operator I with
components Ik using the Pauli matrices τk with k ∈ {x, y, z} in
the basis | 〉 and | 〉. The isotropic combination of all three
Lindblad operators Lx, Ly, and Lz ensures that no particular
state is preferred. Thus, on the Bloch sphere spanned by | 〉
and | 〉, the Lindblad operators drive each pure quantum state
on the surface straight towards the center which corresponds
to the fully mixed state.

B. Weak coupling

Another possibility is that state |B〉 is actually not a fully
dark but a very weakly coupled state—a so called blocking
state [11]. Thus there is a small probability that an electron
leaves the quantum dot via the excitation dR,− which is or-
thogonal to dR,+. This leads to modified tunneling rates for
the Lindblad operators

�L,+ = 4�L, (9a)

�L,− = 0, (9b)

�R,+ = (2 − x)�R, (9c)

�R,− = x�R. (9d)

For x = 0, state |B〉 is fully dark, while for 0 < x 	 1, it is
a very weakly coupled blocking state. Here, we describe the
weak coupling only phenomenologically, without specifying
its microscopic origin.

C. Virtual charge fluctuations

Finally, the third possibility to escape the trapping in state
|B〉 is via virtual charge fluctuations with source and drain
that modify the coherent dynamics of the system. Similar
fluctuations have been described in Refs. [21–23]. They give
rise to a correction of the Hamiltonian HS of the form

δH = 2 ω · I, (10)

which describes a precession of the valley spin operator
I around the vector ω = ∑

l=L,R ωl (cos(2φ), sin(2φ), 0).
By performing a spinful calculation including all two-electron
states, we obtain for the energies ωl with l = L,R

ωl = �l

4

[
2R(ε0 − μl ) + R

(
ε0 + U − J

2
− μl

)

− 3R

(
ε0 + U + J

2
− μl

)]
, (11)

where πR(E ) = Re
[
�

(
1
2 + i E

2πkBT

)] − ln
( Wc

2πkBT

)
is given by

the digamma function �(x) [24] and Wc 
 kBT is used for
regularization. Here, the first, second, and third term describe
virtual charge fluctuations to the empty, singlet, and triplet
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states, respectively. However, since the exchange interaction
J is small [10] compared to the Coulomb repulsion, J 	 U ,
we can approximate the energies as

ωl ≈ �l

2
[R(ε0 − μl ) − R(ε0 + U − μl )], (12)

which exactly corresponds to the results of a spinless calcula-
tion.

III. KINETIC EQUATION

Putting everything together, we can write the master equa-
tion

ρ̇z = Lzρz (13)

as a matrix equation by combining the nonvanishing ma-
trix elements of the density matrix into the vector ρ =
(ρ0, ρA, ρB, ρA

B , ρB
A ). The superoperator Lz is, then, given by

Lz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−4�L z(2 − x)�R z x �R 0 0

4�L cos2(φ) −(2 − x)�R−�dec/2 �dec/2 −ωL sin(2φ) −ωL sin(2φ)

4�L sin2(φ) �dec/2 −x �R−�dec/2 ωL sin(2φ) ωL sin(2φ)

−2i�L sin(2φ) ωL sin(2φ) −ωL sin(2φ) −�R−�dec−2iω̃ 0

2i�L sin(2φ) ωL sin(2φ) −ωL sin(2φ) 0 −�R−�dec+2iω̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

where we used the abbreviations φ = φL−φR and ω̃ =
ωR + ωL cos(2φ). We introduced the counting variable z in
the second and third column of the first row. It keeps track of
the number of electrons leaving the quantum dot [26–29].

In Eq. (14), the phases φl only enter as the difference
φ = φL−φR between the right and the left lead since we
performed a phase transformation, dν → U †

φ dνUφ , with Uφ =
exp

[
iφR

(
d† d − d† d

)]
. The upper left 3 × 3 matrix de-

scribes transitions between populations of the states |0〉, |A〉,
and |B〉, while coherences between |A〉 and |B〉 are covered
by the fourth and fifth row and column. In the absence of
the renormalization terms ωl , coherences between states |A〉
and |B〉 turn out to be irrelevant [10,25]. Although such a co-
herence can be generated for sin(2φ) �= 0 when an electron
tunnels in (fourth and fifth row of the first column), for ωL = 0
this coherence only decays and does not affect the occupation
probabilities of 〈0|, 〈A|, and 〈B| (first three rows of the fourth
and fifth column). We remark that the absence of ωR in the
off-diagonal matrix elements of Lz is due to the chosen basis
states |A〉 and |B〉 adjusted to the right lead.

In the remaining part of the paper, we compare two dif-
ferent limits of Eq. (14). First, we study a perfect dark state
with x = 0, where the electrons can leave the quantum dot
only indirectly either by decoherence (�dec) or coherently via
virtual charge fluctuations (ωL). Second, we study a blocking
state with x > 0 in the absence of decoherence, �dec = 0, such
that the electron can leave the quantum dot either directly with
rate x �R or indirectly via virtual charge fluctuations (ωL). Our
goal is to find out whether it is possible to distinguish these
two models within a transport measurement.

A. Dark state

For a perfect dark state, x = 0, all possible transitions
are indicated in Fig. 3. Upon neglecting renormalization due
to virtual fluctuations, ωL = ωR = 0, the current can be ex-
pressed simply as [25]

〈I〉 = tr(∂zLzρst )|z=1 = 1
2 sin2(φ)

�dec
+ 4�L+�R

4�L�R

, (15)

where ρst is the vector of the density matrix elements in the
steady state, found from L1ρst = 0. In the following, however,
we include the renormalization effect, such that the formula
for the current becomes more complicated.

In Fig. 4, we show the current as a function of the phase
difference φ of the couplings to the left and right leads.
For zero phase difference, φ = 0, the current acquires its
maximum value since the left and right lead fully couple to
the same state, 〈A|LL,+|0〉 = 1 and 〈0|LR,+|A〉 = 1. However,
with an increasing mismatch, φ �= 0, also a dark state |B〉
can be excited on the quantum dot and the electron transport
becomes suppressed. This effect is most significant for phase
differences of φ = π/2, where the left lead no longer ex-
cites the coupled state but only the dark state, 〈A|LL,+|0〉 = 0
and 〈B|LL,+|0〉 = 1. We also find that as the decoherence rate
�dec increases (from red to blue to black), the current increases
as well. For �dec → 0, the current is maximally suppressed,
with virtual charge fluctuation being the only source of a
finite current. The parameters used for Fig. 4 are taken from
the experiment in Ref. [10]. The bias voltage eV = μL − μR

between source and drain is chosen in such a way that virtual
charge fluctuations with the left lead are partially suppressed

FIG. 3. Possible transitions in the dark-state model described by
Eq. (14) with x = 0 and �dec �= 0. Transitions where electrons enter
or leave the quantum dot are indicated by black arrows. Electrons can
only leave the dark state |B〉 via the coupled state |A〉 (red arrows),
and thus transport is suppressed. There are also transitions between
|A〉 and |B〉 that are caused by virtual charge fluctuations with the
left lead (dashed green arrow).

115411-4



DARK VERSUS BLOCKING STATES IN ELECTRONIC … PHYSICAL REVIEW B 110, 115411 (2024)

FIG. 4. Electron current 〈I〉 as a function of the phase difference
φ. Here we compare the dark-state model, �dec > 0 and x = 0
(solid lines), with the blocking-state model, �dec = 0 and x > 0
(dashed lines), for relaxation rates �dec = 0.1 �R (black), 0.05 �R

(blue), 0.01 �R (red) and tunnel couplings 2x = 0.1 (black), 0.05
(blue), 0.01 (red), respectively. We choose �L = 0.4 �R. To obtain
ωL/R, we used kBT = 50 μeV, ε0 = 0.75 meV, U = 20 meV, μL =
ηeV , and μR = (η − 1)eV with η = 0.55 and eV = 19 meV to com-
ply with the situation in Ref. [10]. This choice of parameters leads to
ωL = 0.038 �R and ωR = 0.183 �R.

and decoherence is the dominant escape mechanism out of
state |B〉.

B. Blocking state

The suppression of the electron transport due to a dark state
is very similar to a situation where a so-called blocking state
with x > 0 is realized [11]. A blocking state is a quantum
state that couples only very weakly to the drain electrode with
rate x�R with x 	 1. This situation is sketched in Fig. 5. Sim-
ilar as for the dark-state model, electron current is suppressed,
see Fig. 4. In this case, it is, however, not the decoherence

FIG. 5. Possible transitions in the blocking-state model de-
scribed by Eq. (14) with x > 0 and �dec = 0. Electrons can enter
the quantum dot in the same way as in the dark-state model (see
black arrows), but the tunneling rates for electrons leaving the dot
change. Electrons can now directly escape the blocking state |B〉 with
rate x�R (red arrow). Therefore the transport is suppressed for small
x. Switching between the states |A〉 and |B〉 via decoherence is not
possible anymore. The effect of the virtual charge fluctuations, on
the other hand, is the same for the dark-state and the blocking-state
model.

but rather the direct coupling to the drain which allows for
escaping the trapped state.

To allow for a fair comparison of the dark-state model
(x = 0 and �dec > 0) with the blocking-state model (x > 0
and �dec = 0), we choose x and �dec = 0 such that the respec-
tive rates for getting out of state |B〉 are the same, i.e.,

2x�R = �dec. (16)

With this choice, the values for the electric current for the
two models become almost identical for phase differences of
φ = π/2, as can be seen in Fig. 4.

IV. FACTORIAL CUMULANTS

The comparison of Fig. 3 with Fig. 5 shows that dark-state
and blocking-state model differ qualitatively from each other.
On the other hand, this difference is not reflected in the behav-
ior of the current, see Fig. 4. This raises the question whether
it is possible to distinguish the two scenarios with a transport
measurement at all and, if so, how this can be achieved.

Obviously, measuring the average charge current is not
sufficient. To circumvent this problem, we suggest to study
electron transport in a time-resolved manner by monitoring
the tunneling out of each individual electron as a function of
time. Recording such a time trace of tunneling events provides
the maximal accessible information about the system’s charge
dynamics. Statistical properties of the electron transport are
fully included in full counting statistics, described by the
probabilities PN (t ) that N electrons have left the quantum dot
in a time interval t . To analyze the distribution PN (t ), we
employ factorial cumulants [26–28] which can be obtained
from the cumulant generating function

S (z, t ) = ln tr
(
eLztρst

)
(17)

via derivatives CF,m(t ) = ∂m
z S (z)|z=1 with respect to the

counting variable z.
A quantitative comparison of the full time dependence of

measured factorial cumulants CF,m(t ) of orders m = 1, 2, 3 . . .

with different theoretical models could, in principle, be used
to rule out any proposed model. There is, however, a qual-
itative and, hence, more stringent possibility that relies on
the sign of the factorial cumulant. If electron transport is
supported by uncorrelated tunneling events then the sign of
each factorial cumulant is fixed by [26,27]

(−1)m−1CF,m(t ) � 0. (18)

This, in turn, means that whenever this inequality is violated
for any order m at any time t , correlations must be present
in the electron transfer. Therefore the sign of the factorial
cumulants may serve as a suitable indicator of correlations
and, in addition, may help to distinguish between different
models, namely in cases in which different models predict
different signs.

In Fig. 6, we display the time dependence of the first-,
second-, and third-order factorial cumulants for the dark-state
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FIG. 6. Factorial cumulants CF,m as a function of time t for the
dark-state (solid) and blocking-state (dashed) model. The parameters
are �dec = 0.01 �R and φ = 0.22 π/2. The remaining parameters
are the same as in Fig. 4.

(solid) and the blocking-state (dashed) model by using real-
istic parameters from the experiment [10]. It is convenient
to use a logarithmic scale, first, to present factorial cumu-
lants of different order (whose values may differ by orders of
magnitude) in one plot and, second, to display the power-law
behavior CF,m(t ) ∼ (−1)m−1tm at low t [29]. In addition, we
divide by t , so that at large t the curves approach a constant.
Since negative values cannot be represented in a logarithmic
plot, we show the modulus of the factorial cumulants only.
Nevertheless, we can identify sign changes of the factorial
cumulants as a function of time by the sharp spikes (in Fig. 6,
we find one sign change for the second and two sign changes
for the third factorial cumulant).

The sign changes visible in Fig. 6 clearly indicate that the
electron transport is highly correlated. In fact, already the sec-
ond factorial cumulant violates the inequality −CF,2(t ) � 0,
which corresponds to a super-Poissonian Fano factor, asso-
ciated with the fact that electrons are effectively transferred
in bunches. While this is interesting as such, we find that
both the dark-state and the blocking-state model are basically
indistinguishable even for higher-order factorial cumulants.
From this we conclude that even with full counting statistics,
a distinction between the two models is not possible for the
parameters given in the experiment [10].

Is this a generic statement or does it depend on the sys-
tem parameters? Or, to put it differently, can one suggest
a change of system parameters such that the dark-state and
the blocking-state model predict different signs of the facto-
rial cumulants? Instead of unsystematically calculating many
factorial cumulants for a large parameter space, we aim at a
more systematic approach to identify regions in which the
two models can be distinguished by full counting statistics.
This procedure is based on the analytic structure of the cu-
mulant generating function Eq. (17) in the complex plane, as
explained in the next section.

V. LEE-YANG ZEROS

Lee-Yang zeros are a concept from statistical physics and
originally refer to the zeros of a grand-canonical partition

function as a function of the fugacity. Lee-Yang theory was
developed as a tool to reveal phase transitions in the Ising
model [30,31] and was later generalized to other systems
[32–38].

In the context of full counting statistics, the equivalent to
the grand-canonical partition function is the moment generat-
ing function

G(z, t ) = eS(z,t ) =
∑

N

zN PN (t ), (19)

which can be factorized [39]

G(z, t ) =
∏

n

z − zn(t )

1 − zn(t )
, (20)

where the denominator ensures normalization, G(1, t ) = 1.
The zeros zn(t ) of G(z, t ) are referred to as dynamical Lee-
Yang zeros [36]. They are either real or occur as complex
conjugate pairs because of G∗(z, t ) = G(z∗, t ). For the cumu-
lant generating function S (z, t ), the zn(t ) are poles. We obtain

S (z, t ) =
∑

n

ln{[1 − p̃n(t )] + z p̃n(t )}, (21)

with p̃n = 1/(1−zn). The p̃n can be interpreted as pseudo-
probabilities. If they are real and lie between 0 and 1 then
the cumulant generating function is that of a Poisson bino-
mial process with p̃n being the probability that the transition
n takes place, which is independent of all other transitions
[29]. If, on the other hand, the pseudo-probabilities p̃n (and,
thus, the Lee-Yang zeros zn) have a finite imaginary part, it
is no longer possible to understand the stochastic process in
terms of uncorrelated transitions. Instead, correlations must
be present [26,27] and there is a chance to reveal them by a
violation of the inequality Eq. (18).

A. Classification of different correlation regimes

In Fig. 7, we show the position of the Lee-Yang zeros as
white dots in the complex plane for the dark-state model and
some finite length t of the time interval. They are not randomly
distributed but form some regular pattern that depends on the
system parameters. In panel (a), they all lie on the negative
real axis. In this case, the stochastic model can be interpreted
in terms of a Poisson binomial distribution of uncorrelated
tunneling events. This contrasts with the scenarios depicted in
panels (b)–(d), in which at least some of the Lee-Yang zeros
have a finite imaginary part, which indicates correlations. In
panel (b), only the Lee-Yang zeros on the right, in (c) only
those on left, and in (d) all of them have a finite imaginary part.
With increasing time t , every Lee-Yang zero moves from left
to right (white arrows) to an attraction point zA (black stars in
Fig. 7). In the limit t → ∞, they form a dense set on a contour
line denoted as M which is indicated by blue color in Fig. 7.

To find the asymptotic Lee-Yang zero behavior, we per-
form, following Ref. [26], a spectral decomposition of the
Liouvillian Lz and retain in the expression for the moment
generating function only the contributions coming from the
two eigenvalues λ0(z) and λ1(z) with the largest real parts,
Re λ0 � Re λ1 > Re λi �=0,1. This yields

G(z, t ) ≈ a0(z)eλ0(z)t + a1(z)eλ1(z)t . (22)
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FIG. 7. Lee-Yang zeros (white dots) in the complex plane for
various combinations of parameters φ and �dec obtained within the
dark-state model at �Rt = 20. The difference Re λ0(z) − Re λ1(z) is
represented by the background color with blue background indicat-
ing a vanishing difference. (a) For φ = 0.8 π/2 and �dec = 5 �R,
all zeros are on the real axis (RR). (b) For φ = 0.75 π/2 and
�dec = 0.5 �R, only the zeros close to zA leave the real axis (RI).
(c) For φ = 0.1 π/2 and �dec = 4 �R, only the zeros far away from
the origin, z → z−, leave the real axis (IR). (d) For φ = 0.2 π/2
and �dec = 1 �R, all zeros leave the real axis (II). See Sec. V A 3
for a more detailed explanation of this categorization. The remaining
parameters are the same as in Fig. 4.

Contributions from eigenvalues with smaller real part can be
neglected for large t . The condition G(z, t ) = 0 leads to

λ0(z) − λ1(z) = ln(a1/a0) + iπ (2n + 1)

t
, (23)

(see also Ref. [40]), where n is some integer. The real part of
Eq. (23) in the limit t → ∞ gives rise to

Re λ0(z) − Re λ1(z) = 0, (24)

which defines the contour line M. The imaginary part of
Eq. (23), on the other hand, determines the individual posi-
tions of the Lee-Yang zeros on the contour M, where each
n determines a given zn(t ). To categorize the arrangements
of Lee-Yang zeros seen in Fig. 7, we study both the attrac-
tion point zA of the contour M and its behavior in the limit
Re z → −∞.

1. Attraction points of Lee-Yang zeros

For t → ∞, every zero zn(t ) of the generating function
approaches the solution of

λ0(zA) = λ1(zA). (25)

This equation uniquely determines the attraction points zA =
zA (�dec,φ) as a function of the system parameters. They
are typically square-root branch points and occur as complex
conjugate pairs [see stars in Figs. 7(b) and 7(d)] or are com-
pletely real [see stars in Figs. 7(a) and 7(c)]. In cases where
Eq. (25) cannot be solved analytically, we use the approximate
method to find the position of zA presented in Ref. [26] (based
on Refs. [41,42]) that makes use of factorial cumulants of high
order, m 
 1.

2. Lee-Yang zeros at Re z → −∞
To determine whether the Lee-Yang zeros z− in the limit

Re z → −∞ are real or have a nonzero imaginary part, we
use Eq. (24) far from the origin. The eigenvalues λi(z) in the
limit z → −∞ can be calculated analytically by entering the
ansatz of a Puiseux series

λi(z) = b1,i
√

z + b0,i + b−1,i
1√
z

+ . . . (26)

into the characteristic polynomial of Lz. Inserting this into
Eq. (24) at Re z → −∞ and Im z = 0 leads to the conditions

Im b1,1 = Im b1,0, (27a)

Re b0,1 = Re b0,0, (27b)

for the coefficients of Eq. (26). The zeros z− only lie on
the real axis if both conditions are met. This allows us to
determine for which system parameters the imaginary part of
the Lee-Yang zeros Im z−(�dec,φ) are finite. For Im z− = 0,
the zeros far away from the origin are real [see Figs. 7(a) and
7(b)] while for Im z− �= 0 they occur as complex conjugate
pairs [see Figs. 7(c) and 7(d)].

3. Arrangements of Lee-Yang zeros in the complex plane

The four examples shown in Fig. 7 correspond to four
topologically different arrangements of the Lee-Yang zeros
labeled by αβ, with α, β ∈ {R,I}. Here, the first label α in-
dicates whether the Lee-Yang zeros on the left z− are real
(R) or have a finite imaginary part (I). Similarly, the second
label β indicates the absence (R) or presence (I) of a finite
imaginary part of the Lee-Yang zeros on the right, i.e., of zA.
Figures 7(a), 7(b), 7(c), and 7(d) correspond to configurations
RR, RI, IR, and II, respectively.

B. Parameter spaces for dark-state and blocking-state model

This classification can be used to systematically analyze
the parameter space of the dark-state and blocking-state model
with respect to correlations, see Fig. 8. We vary the phase
difference φ and the rate with which the dark or blocking
state are left. In white we show the regime RR, for which all
Lee-Yang zeros remain on the real axis. The other regimes are
colored, II in green, IR in blue, and RI in red. Transitions from
αR to αI are indicated by solid lines and transitions from Rβ

to Iβ by dashed lines.
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(a) (b)

FIG. 8. Parameter space of (a) dark-state and (b) blocking-state model. The parameters are phase difference φ and (a) the decoherence
rate �dec for the dark-state model or (b) the coupling x for the blocking-state model. For a comparison of (a) and (b), we choose 2x�R = �dec.
The regimes RR, RI, IR, and II identified in Sec. V A and Fig. 7 are colored in white, red, blue, and green, respectively. The remaining
parameters are the same as in Fig. 4.

For both the dark-state and the blocking-state model,
the characteristic polynomial of the superoperator Lz is π -
periodic and even in φ. Therefore, in Fig. 8, we only
show the parameter regimes 0 � φ � π/2. In the dark-state
model, the decoherence rate can be assumed to be arbitrarily
large. This contrasts with the blocking-state model, for which
values of x larger than 2 are unphysical, as they would imply
a negative value of the rate �R,+. We, therefore, show the
parameter space up to 2x�dec = 4�R only. (In fact, already
for half that value, 2x�dec = 2�R, both states |A〉 and |B〉 are
equally strongly coupled to the drain, and one can hardly call
this a blocking-state model anymore.)

For infinitesimally small decoherence, the dark-state model
is always in the II regime (except for the singular point φ =
π/2). With increasing decoherence rate, more and more Lee-
Yang zeros move to the negative real axis until, for sufficiently
large �dec (that depends on the phase difference φ), the
regime RR is realized.

Also for the blocking-state model, the regime II dominates
in a large area of the parameter space. In particular for in-
finitesimally small couplings of the blocking state the regime
II is always realized. This implies that for the parameters
realized in the experiment of Ref. [10] (small decoherence
rate and moderate phase difference), both the dark-state and
the blocking-state model are in the same correlation regime
such that it is not possible to distinguish them via the sign of
factorial cumulants. However, by inspecting the lower right
corner of the parameter space in Fig. 8 (see also the inset), we
find that for a phase difference φ close to π/2, a distinction
between the two models by means of factorial cumulants
seems to be possible.

C. Distinguishing a dark from a blocking state
with factorial cumulants

While for a small phase difference φ, a large decoherence
rate is required in the dark-state model to suppress correlations
in transport, there is an interesting region around φ = π/2,
in which small decoherence rates are sufficient to change from
the regime II via RI to RR, see inset in panel (a) of Fig. 8.
Comparing the insets of panels (a) and (b), we find that there

are parameters for which the dark-state model is in the RR
regime while in the blocking-state model the RI regime is
realized.

In Fig. 9(a), we show the factorial cumulants for both
the dark-state and the blocking-state model for parameters
�dec = 0.001 �R and φ = 0.99 π/2. In this case, the dark-
state model is in the RR regime and, indeed, the factorial
cumulants CF,m (solid lines) always obey the inequality (18).
As a consequence, no sign change as a function of time is
visible. In contrast, the blocking-state model (dashed lines) is
in the RI regime, for which correlations occur and, indeed, we
find that the third cumulant changes its sign as indicated by a
sharp spike.

In the calculation of the factorial cumulants, we assumed a
perfect detector with no false or missing events as well as an
infinitely long time trace. In reality, however, some tunneling
events are missed by the detector because of a finite time
resolution t . This leads to systematic errors. In addition, a
finite measurement time T leads to stochastic errors. These
effects can be simulated within an error model, as described in
Ref. [43]. The resulting third factorial cumulant CF,3 is shown
for some typical values of t and T in panel (b) of Fig. 9.
The solid lines include the systematic errors due to missed
events, and the shaded area accounts for stochastic errors. We
conclude that despite the errors, a distinction of the dark-state
from the blocking-state model is still possible with the help of
the sign of factorial cumulants.

VI. CONCLUSIONS

Motivated by a recent experiment [10], we investigated the
all-electric analog of coherent population trapping in carbon-
nanotube quantum dots. Whenever a so-called dark state is
excited in the quantum dot, electron transport is suppressed
since the trapped electron can only leave with the help of
decoherence. Suppression of transport could, however, also
be due to a so-called blocking state, a state that is only
weakly tunnel coupled to the drain electrode. This raises the
fundamental question of whether and how it is possible to
distinguish the two scenarios within a transport measurement.
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FIG. 9. (a) Factorial cumulants CF,m as a function of time t for the dark-state (solid) and blocking-state (dashed) model. (b) Third factorial
cumulant CF,3 for the dark-state (black) and the blocking-state (green) model. Statistical errors (shaded background) due to a finite time trace
(T = 107 �−1

R ) and systematic errors due to a limited time resolution (t = 0.2 �−1
R ) are included. The parameters are φ = 0.99 π/2 and

�dec = 0.001. The remaining parameters are the same as in Fig. 4.

Going beyond measuring the average current through the
carbon nanotube, we suggest to study the full counting statis-
tics of charge transfer with the help of factorial cumulants,
since they are sensitive to correlations. In particular, a sign
change of factorial cumulant as a function of time indicates
the presence of correlations.

We use Lee-Yang zeros to distinguish between different
correlation regimes. In this way, we find that a clear distinction
between the dark-state and the blocking-state model using the
sign of the factorial cumulants is only possible for a large
phase difference of the tunnel coupling to the source and
drain electrode. For small values of the phase difference, both
models have qualitatively the same full counting statistics.

Our Lee-Yang zero analysis makes a statement about pos-
sible parameters for which a dark state can be distinguished
from a blocking state and for which the same qualitative
behavior is expected. It should be emphasized, however, that

it neither rules out the existence of dark states in carbon-
nanotube quantum dots nor does it provide any mechanism for
a blocking state or assess how likely it is to exist. We merely
understand our proposal as a challenge to experimentally real-
ize a system in which one of the two competing models can be
ruled out by analyzing the full counting statistics of electron
transport in terms of factorial cumulants.
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